Joël PUIBASSET

Fonction : Directeur de Recherches – HDR

Axe : SiCF

Catégorie : Permanents

Téléphone : 02 38 25 58 03

Contacter :

Veuillez activer JavaScript dans votre navigateur pour remplir ce formulaire.
Nom

Domaines de recherche :

Structure, dynamique et thermodynamique de nanosystèmes interfaciaux métastables par simulation moléculaire

Les systèmes nanométriques fascinent car leur petite taille modifie les propriétés physiques de la matière. L’ajout d’un milieu environnant dense (comme un solide) en contact direct avec ces nanosystèmes exacerbe ces effets de taille, donnant lieu à des propriétés parfois remarquables, même dans les situations où les interactions atomiques entre le système et le milieu restent relativement faibles. Ces nanosystèmes, dits interfaciaux, sont très étudiés à la fois pour mieux comprendre les effets du désordre imposé par l’environnement dans les situations de confinement, mais aussi pour tenir compte des effets du support sur les propriétés de nano-objets déposés.

Eau confinée dans les silices nanoporeuses :
Effet de l’interface fluide/solide sur la structure et les propriétés thermodynamiques du fluide confiné.
Eau surfondue métastable : effet du confinement sur la capacité calorifique.

Adsorption de gaz dans un milieu nanoporeux :
Comprendre la forme des isothermes à travers l’influence de la taille du système et du réservoir de gaz.
Rôle déterminant des hétérogénéités physico-chimiques.
Paysage d’énergie libre complexe et explosion du nombre d’états métastables associés à la boucle d’hystérésis.

De l’échelle des interactions fluide-substrat à celle des hétérogénéités physico-chimiques :
Comprendre l’hystérésis dans le cadre d’une modélisation moléculaire grâce à une approche multiéchelle.


Publications :

“Bulk supercooled water versus adsorbed films on silica surfaces : specific heat by Monte Carlo simulation”, J. Puibasset, P. Judeinstein, J.-M. Zanotti, PCCP, accepted (2021).
https://doi.org/10.1039/D0CP05387B

“Density Functional Theory Study of the Spontaneous Formation of Covalent Bonds at the Silver/Silica Interface in Silver Nanoparticles Embedded in SiO2 : Implications for Ag+ Release”, H. Balout, N. Tarrat, J. Puibasset, S. Ispas, C. Bonafos, M. Benoit, ACS Appl. Nano Mater. 2, 5179 (2019).
https://doi.org/10.1021/acsanm.9b01049

“Elastic Compliance and Stiffness Matrix of the FCC Lennard-Jones Thin Films : Influence of Thickness and Temperature”, J. Puibasset, J. Phys. Chem C 123, 15027 (2019).
https://pubs.acs.org/doi/10.1021/acs.jpcc.9b02716

“Molecular simulation study of the heat capacity of metastable water between 100 and 300 K”, J. Puibasset, P. Judeinstein and J. M. Zanotti, Mol. Simul. 45, 462 (2019).
https://doi.org/10.1080/08927022.2018.1535179

“Finite-size corrections in simulation of dipolar fluids”, L. Belloni, and J. Puibasset, J. Chem. Phys. 147, 224110 (2017). Editor’s pick.
https://aip.scitation.org/doi/10.1063/1.5005912

“Adsorption-induced deformation of a nanoporous material : influence of the fluid–adsorbent interaction and surface freezing on the pore-load modulus measurement”, J. Puibasset, J. Phys. Chem. C 121, 18779 (2017)
https://pubs.acs.org/doi/10.1021/acs.jpcc.7b06888

“On the thermodynamics and experimental control of twinning in metal nanocrystals”, K. D. Gilroy, J. Puibasset, M. Vara, and Y. Xia, Angew. Chem. Int. Ed. 56, 8647 (2017)
https://onlinelibrary-wiley-com.inp.bib.cnrs.fr/doi/full/10.1002/anie.201705443

“Freezing and melting of silver nanoparticles on silica substrate using a simple interatomic potential for Ag-SiO2 interaction on the basis of ab Initio calculations and experimental data”, A. C. Ngandjong, C. Mottet, and J. Puibasset, J. Phys. Chem. C 121, 3615 (2017)
https://pubs.acs.org/doi/10.1021/acs.jpcc.6b12084

“Structure and permeability of porous silicon investigated by self-diffusion NMR measurements”, J. Puibasset, P. Porion, E. Rolley, et A. Grosman, Oil & Gas Science and Technology, 71, 54 (2016)
https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2016/04/ogst150128/ogst150128.html

“Influence of the silica support on the structure and the morphology of silver nanoparticles : a molecular simulation study” A. C. Ngandjong, C. Mottet, and J. Puibasset, J. Phys. Chem. C 120, 8323 (2016).
https://pubs.acs.org/doi/10.1021/acs.jpcc.6b00290

“Adsorption-induced strain of a nanoscale silicon honeycomb” A. Grosman, J. Puibasset, and E. Rolley, EPL 109, 56002 (2015).
http://iopscience.iop.org.inp.bib.cnrs.fr/article/10.1209/0295-5075/109/56002/meta

“Influence of system size on the properties of a fluid adsorbed in a nanopore : physical manifestations and methodological consequences” J. Puibasset, E. Kierlik and G. Tarjus, J. Chem. Phys. 141, 044716 (2014).
https://aip.scitation.org/doi/10.1063/1.4891359

“Fluid adsorption in linear pores : a molecular simulation study of the influence of heterogeneities on the hysteresis loop and the distribution of metastable states” J. Puibasset, Molecular Simulation 40, 690 (2014).
https://www-tandfonline-com.inp.bib.cnrs.fr/doi/abs/10.1080/08927022.2013.829221

“The SIMPLE phase II dark matter search” M. Felizardo, T. A. Girard, T. Morlat, A. C. Fernandes, A. R. Ramos, J. G. Marques, A. Kling, J. Puibasset, M. Auguste, D. Boyer, A. Cavaillou, J. Poupeney, C. Sudre, F. P. Carvalho, M. I. Prudencio, et R. Marques, Phys. Rev. D 89, 072013 (2014).
https://journals-aps-org.inp.bib.cnrs.fr/prd/abstract/10.1103/PhysRevD.89.072013

“Fabrication and response of high concentration SIMPLE superheated droplet detectors with different liquids” M. Felizardo, T. Morlat, J. G. Marques, A. R. Ramos, T. A. Girard, A. C. Fernandes, A. Kling, I. Lázaro, R. C. Martins, J. Puibasset, Astroparticle Physics 49, 28 (2013).
https://www-sciencedirect-com.inp.bib.cnrs.fr/science/article/pii/S0927650513001278?via%3Dihub

“Improving molecular simulation models of adsorption in porous materials : interdependence between domains” J. Puibasset, Oil & Gas Sciences and Technology 68, 309 (2013).
https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2013/02/ogst120112/ogst120112.html

“Final analysis and results of the phase II SIMPLE dark matter search” M. Felizardo, T. A. Girard, T. Morlat, A. C. Fernandes, A. R. Ramos, J. G. Marques, A. Kling, J. Puibasset, M. Auguste, D. Boyer, A. Cavaillou, J. Poupeney, C. Sudre, H. S. Miley, R. F. Payne, F. P. Carvalho, M. I. Prudêncio, A. Gouveia, and R. Marques, Phys. Rev. Lett. 108, 201302 (2012).
https://journals-aps-org.inp.bib.cnrs.fr/prl/abstract/10.1103/PhysRevLett.108.201302

“Bridge function for the dipolar fluid from simulation” J. Puibasset and L. Belloni, J. Chem. Phys. 136, 154503 (2012).
https://aip.scitation.org/doi/10.1063/1.4703899

“Stability intervals of metastable states in hysteretic systems” J. Puibasset, Phys. Rev. E 84, 061126 (2011).
https://journals-aps-org.inp.bib.cnrs.fr/pre/abstract/10.1103/PhysRevE.84.061126

“Numerical characterization of the density of metastable states within the hysteresis loop in disordered systems” J. Puibasset, J. Phys. : Condens. Matter 23, 035106 (2011).
http://iopscience.iop.org.inp.bib.cnrs.fr/article/10.1088/0953-8984/23/3/035106/meta

“First results of the phase II SIMPLE dark matter search” M. Felizardo, T. Morlat, A. C. Fernandes, T. A. Girard, J. G. Marques, A. R. Ramos, M. Auguste, D. Boyer, A. Cavaillou, C. Sudre, J. Poupeney, R. F. Payne, H. S. Miley, and J. Puibasset, Phys. Rev. Lett. 105, 211301 (2010).
https://journals-aps-org.inp.bib.cnrs.fr/prl/abstract/10.1103/PhysRevLett.105.211301

“Counting metastable states within the adsorption/desorption hysteresis loop : a molecular simulation study of confinement in heterogeneous pores” J. Puibasset, J. Chem. Phys. 133, 104701 (2010).
https://aip.scitation.org/doi/10.1063/1.3483790

“Influence of reservoir size on the adsorption path in an ideal pore” J. Puibasset, E. Kierlik and G. Tarjus, J. Chem. Phys. 131, 124123 (2009).
https://aip.scitation.org/doi/10.1063/1.3236510

“Effect of the reservoir size on gas adsorption in inhomogeneous porous media” E. Kierlik, J. Puibasset and G. Tarjus, J. Phys. Condens. Matter 21, 155102 (2009).
http://iopscience.iop.org.inp.bib.cnrs.fr/article/10.1088/0953-8984/21/15/155102/meta

“Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon” J. Puibasset, Langmuir 25, 903-911 (2009).
https://pubs.acs.org/doi/abs/10.1021/la802474c

“Pseudocritical or hysteresis temperature versus pore size for simple fluids confined in cylindrical nanopores” J. Puibasset, J. Chem. Phys. 129, 024705 (2008).
https://aip.scitation.org/doi/10.1063/1.2948967

“Molecular simulations of water in hydrophobic microporous solids” R. J.-M. Pellenq, T. Roussel, and J. Puibasset, Adsorption 14, 733 (2008).
https://link.springer.com/article/10.1007/s10450-008-9135-8

“Grand Canonical Monte Carlo simulation study of water adsorption in silicalite at 300K” J. Puibasset and R. J.-M. Pellenq, J. Phys. Chem. B 112, 6390 (2008).
https://pubs.acs.org/doi/abs/10.1021/jp7097153

“Adsorption/desorption hysteresis of simple fluids confined in realistic heterogeneous silica mesopores of micrometric length : A new analysis exploiting a multiscale Monte Carlo approach” J. Puibasset, J. Chem. Phys. 127, 154701 (2007).
https://aip.scitation.org/doi/10.1063/1.2790423

“Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo : Influence of fluid/substrate interactions” J. Puibasset, J. Chem. Phys. 127, 074702 (2007).
https://aip.scitation.org/doi/10.1063/1.2764477

“Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo : Influence of pore size” J. Puibasset, J. Chem. Phys. 126, 184701 (2007).
https://aip.scitation.org/doi/10.1063/1.2735582

“Water confined in mesoporous silica glasses : influence of temperature on adsorption / desorption hysteresis loop and fluid structure” J. Puibasset and R. J.-M. Pellenq, Eur. Phys. J. ST 141, 41 (2007).
https://link-springer-com.inp.bib.cnrs.fr/article/10.1140%2Fepjst%2Fe2007-00013-3

“Generalized isobaric-isothermal ensemble : application to capillary condensation and cavitation in heterogeneous nanopores” J. Puibasset, Mol. Phys. 104, 3021 (2006).
https://www-tandfonline-com.inp.bib.cnrs.fr/doi/abs/10.1080/00268970600938485

“Influence of surface chemical heterogeneities on adsorption/desorption hysteresis and coexistence diagram of metastable states within cylindrical pores” J. Puibasset, J. Chem. Phys. 125, 074707 (2006).
https://aip.scitation.org/doi/10.1063/1.2229193

“New extension of the Gibbs ensemble Monte Carlo simulation method : analysis of phase coexistence of simple fluids adsorbed in heterogeneous pores” J. Puibasset, Annales de Chimie Science des Matériaux 30, 327 (2005).
https://acsm.revuesonline.com/article.jsp?articleId=6674

“Thermodynamic characterization of fluids confined in heterogeneous pores by Monte Carlo simulations in the Grand Canonical and the Isobaric-Isothermal Ensembles” J. Puibasset, J. Phys. Chem. B 109, 8185 (2005).
https://pubs.acs.org/doi/abs/10.1021/jp0502151

“Phase coexistence in heterogeneous porous media : a new extension to Gibbs Ensemble Monte Carlo simulation method” J. Puibasset, J. Chem. Phys. 122, 134710 (2005).
https://aip.scitation.org/doi/10.1063/1.1867376

“Capillary condensation in a geometrically and a chemically heterogeneous pore : a molecular simulation study” J. Puibasset, J. Phys. Chem. B 109, 4700 (2005).
https://pubs.acs.org/doi/abs/10.1021/jp037696d

“SIMPLE dark matter search results” T. A. Girard, F. Giuliani, T. Morlat, M. F. da Costa, J. I. Collar, C. Limagne, G. Waysand, J. Puibasset, H. S. Miley, M. Auguste, D. Boyer, A. Cavaillou, J. G. Marques, C. Oliveira, A. C. Fernandes, A. R. Ramos, and R. C. Martins, Phys. Lett. B 621, 233-238 (2005).
https://www-sciencedirect-com.inp.bib.cnrs.fr/science/article/pii/S0370269305008798?via%3Dihub

“Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K : a grand canonical Monte Carlo simulation study of hysteresis” J. Puibasset and R. J.-M. Pellenq, J. Chem. Phys. 122, 094704 (2005).
https://aip.scitation.org/doi/10.1063/1.1854129

“Grand potential, Helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method” J. Puibasset, J. Phys. Chem. B 109, 480 (2005).
https://pubs.acs.org/doi/abs/10.1021/jp0474834

“A grand canonical Monte Carlo simulation study of water adsorption on Vycor-like hydrophilic mesoporous silica at different temperatures” J. Puibasset and R. J.-M. Pellenq, J. Phys. Condens. Matter 16, S5329 (2004)
http://iopscience.iop.org.inp.bib.cnrs.fr/article/10.1088/0953-8984/16/45/003/meta

“A comparison of water adsorption on ordered and disordered silica substrates” J. Puibasset and R. J.-M. Pellenq, Phys. Chem. Chem. Phys. 6, 1933 (2004).
https://pubs.rsc.org/en/Content/ArticleLanding/2004/CP/b313001k#!divAbstract

“Grand Canonical Monte Carlo Simulation study of Water Structure on Hydrophilic Mesoporous and Plane Silica Substrates” J. Puibasset and R. J.-M. Pellenq, J. Chem. Phys. 119, 9226 (2003).
https://aip.scitation.org/doi/10.1063/1.1614206

“Confinement effect on thermodynamic and structural properties of water in hydrophilic silica” J. Puibasset and R. J.-M. Pellenq, Eur. Phys. J. E 12 (s01), S67-S70 (2003).
https://link-springer-com.inp.bib.cnrs.fr/article/10.1140%2Fepjed%2Fe2003-01-017-1

“Water Adsorption on Hydrophilic Mesoporous and Plane Silica Substrates : a Grand Canonical Monte Carlo Simulation study” J. Puibasset, and R. J.-M. Pellenq, J. Chem. Phys. 118, 5613 (2003).
https://aip.scitation.org/doi/10.1063/1.1556075

“First Dark Matter Limits from Large-Mass, Low-Background, Superheated Droplet Detector” J.I. Collar, J. Puibasset, T.A. Girard, D. Limagne, H.S. Miley, and G. Waysand, Phys. Rev. Lett. 85 (15), 3083 (2000)
https://journals-aps-org.inp.bib.cnrs.fr/prl/abstract/10.1103/PhysRevLett.85.3083

“Prospects for SIMPLE 2000 : a large mass, low-background superheated droplet detector for WIMP searches” J.I. Collar, J. Puibasset, T.A. Girard, D. Limagne, H.S. Miley, and G. Waysand, New Journal of Physics 2, 1.1 (2000). http://www.njp.org/
http://iopscience.iop.org.inp.bib.cnrs.fr/article/10.1088/1367-2630/2/1/14/meta

“Preliminary dark matter limits from a large-mass, low-background SDD” J.I. Collar, J. Puibasset, T.A. Girard, D. Limagne, H.S. Miley, and G. Waysand, Nuclear Physics B 87, 120-122 (2000)
https://www-sciencedirect-com.inp.bib.cnrs.fr/science/article/pii/S0920563200006514?via%3Dihub